- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Lee, Christine P (2)
-
Mutlu, Bilge (2)
-
Wang, Xinyu Jessica (2)
-
Porfirio, David (1)
-
Zhao, Kevin Chenkai (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
With the increasing prevalence of online learning, adapting education to diverse learner needs remains a persistent challenge. Recent advancements in artificial intelligence (AI), particularly large language models (LLMs), promise powerful tools and capabilities to enhance personalized learning in online educational environments. In this work, we explore how LLMs can improve personalized learning experiences by catering to individual user needs toward enhancing the overall quality of online education. We designed personalization guidelines based on the growing literature on personalized learning to ground LLMs in generating tailored learning plans. To operationalize these guidelines, we implemented LearnMate, an LLM-based system that generates personalized learning plans and provides users with real-time learning support. We discuss the implications and future directions of this work, aiming to move beyond the traditional one-size-fits-all approach by integrating LLM-based personalized support into online learning environments.more » « lessFree, publicly-accessible full text available April 25, 2026
-
Lee, Christine P; Porfirio, David; Wang, Xinyu Jessica; Zhao, Kevin Chenkai; Mutlu, Bilge (, ACM)Automated planning is traditionally the domain of experts, utilized in fields like manufacturing and healthcare with the aid of expert planning tools. Recent advancements in LLMs have made planning more accessible to everyday users due to their potential to assist users with complex planning tasks. However, LLMs face several application challenges within end-user planning, including consistency, accuracy, and user trust issues. This paper introduces VeriPlan, a system that applies formal verification techniques, specifically model checking, to enhance the reliability and flexibility of LLMs for end-user planning. In addition to the LLM planner, VeriPlan includes three additional core features—a rule translator, flexibility sliders, and a model checker—that engage users in the verification process. Through a user study (𝑛 = 12), we evaluate VeriPlan, demonstrating improvements in the perceived quality, usability, and user satisfaction of LLMs. Our work shows the effective integration of formal verification and user-control features with LLMs for end-user planning tasks.more » « lessFree, publicly-accessible full text available April 25, 2026
An official website of the United States government
